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Quasiregular mappings

Quasiregular functions on Rn generalize analytic functions on C.

Definition
• A continuous function f : U → Rn on a domain U ⊆ Rn is called

quasiregular if f ∈W 1
n,loc(U) and there exists K ≥ 1 such that

‖Df (x)‖n ≤ KJf (x) a.e. in U.

• More generally, a continuous function f : Rn → Rn ∪ {∞} is called
quasiregular (or quasimeromorphic) if the set of poles f−1(∞) is
discrete and if f is quasiregular on Rn \ f−1(∞).
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The Zorich mapping

The Zorich map Z : R3 → R3 \ {0} is a quasiregular analogue of the
exponential function. It can be defined as follows:

1 Choose a bi-Lipschitz map

h : [−π
2 ,

π
2 ]

2 → {(x , y , z) : x2 + y2 + z2 = 1, z ≥ 0}.

2 Define Z : [−π
2 ,

π
2 ]

2 × R→ {(x , y , z) : z ≥ 0} by

Z (x , y , z) = ezh(x , y).

3 Extend Z to all of R3 by repeatedly reflecting in planes.

The Zorich map is quasiregular on R3 and doubly-periodic with periods
(2π,0,0) and (0,2π,0).
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Trigonometric analogues

• Quasiregular maps of Rn which generalize the sine and cosine
functions have been constructed by Drasin, by Mayer and by
Bergweiler and Eremenko.

• By iterating their ‘trigonometric’ map, Bergweiler and Eremenko
obtained a seemingly paradoxical decomposition of Rn.

• We will construct and iterate a 3-dimensional quasiregular
analogue of the meromorphic tangent function.



Construction of a generalized tangent mapping

Observe that the complex function

tan ζ =
i(1− e2iζ)

1 + e2iζ

is the composition of a Möbius map and the exponential function.

Define a sense-preserving Möbius map A : R3 → R3 ∪ {∞} by

A(x , y , z) = (0,0,1) +
(2x ,2y ,−2(z + 1))
x2 + y2 + (z + 1)2 .

We then define our 3-dimensional analogue of tangent by

T (x) = (A ◦ Z )(2x).
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Expressions for T

T contains embedded copies of the usual (complex) tangent function:

• T (0, y , z) = (0, Re(tan(y + iz)), Im(tan(y + iz))),

• T (x ,0, z) = (Re(tan(x + iz)), 0, Im(tan(x + iz))).

If M(x , y) = max{|x |, |y |} ≤ π/4 and we write ζ = M(x , y) + iz,
then

T (x , y , z) =

(
x√

x2 + y2
Re(tan ζ),

y√
x2 + y2

Re(tan ζ), Im(tan ζ)

)
.
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Geometric properties of T
Comparing T with tan, the z-axis plays the role of the imaginary axis,
while the xy -plane plays the role of the real axis.

• T is doubly-periodic with periods (π,0,0) and (0, π,0).

• T omits the values (0,0,±1). These are asymptotic values of T :

lim
z→±∞

T (x , y , z) = (0,0,±1).

• T : {xy -plane} → {xy -plane} ∪ {∞}.
• The {z > 0} and {z < 0} half-spaces are completely invariant

under T .

T is highly symmetric: If R is a reflection in a co-ordinate plane then

T (R(x)) = R(T (x)).
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Iteration of tangent maps on C

For a parameter λ > 0, Devaney and Keen described the dynamics of
the meromorphic tangent family τλ(ζ) = λ tan ζ.

Theorem (Devaney and Keen)
• If 0 < λ < 1, then J(τλ) ⊆ R is locally a Cantor set.

Attracting fixed point at origin.

• If λ = 1, then J(τλ) = R. Parabolic fixed point at origin.

• If λ > 1, then J(τλ) = R. Attracting fixed points at ±iξ0, where
ξ0 > 0 solves ξ0 = λ tanh ξ0.
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Dynamics of λT

For λ > 0 we put
Tλ(x) = λT (x).

We iterate Tλ and aim to establish an analogue of the λ tan ζ results.

First, we describe the behaviour on the upper and lower half-spaces.

Theorem

• If 0 < λ < 1, then Tλ has an attracting fixed point at the origin.

• If 0 < λ ≤ 1, then T k
λ (x)→ 0 on {(x , y , z) : z 6= 0}, as k →∞.

• If λ > 1, then Tλ has attracting fixed points at (0,0,±ξ0), where
ξ0 = λ tanh ξ0, and

T k
λ (x)→ (0,0,±ξ0) on {(x , y , z) : ±z > 0}.
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What’s a Julia set?

For a meromorphic function f with poles, the Julia set J(f ) satisfies

J(f ) = O−f (∞) = ∂I(f ),

where I(f ) = {ζ : f k (ζ)→∞ as k →∞}.

Theorem
For all λ > 0,

O−Tλ
(∞) = ∂I(Tλ) = I(Tλ).

Call this set J. Then J is an uncountable perfect set.
If U is an open set that meets J then, for some m > 0,

T m
λ (U) = (R3 ∪∞) \ {(0,0,±λ)}.

J is contained in the closure of the set of periodic points of Tλ.
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What does J look like?

J = O−Tλ
(∞) = ∂I(Tλ) ⊆ {xy -plane}

Theorem
If λ ≥ 1 then J is connected. If 0 < λ < 1 then J is not connected.

Theorem
If λ >

√
2 then J = {xy-plane}.

The constant
√

2 here cannot be replaced by any smaller value.

When λ <
√

2, a (relatively) open subset of the xy -plane lies in the
attracting basin of 0 . . .
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Attracting basin of 0

Each square is the subset [−π
4 ,

π
4 ]

2 of the xy -plane.
The shaded points lie in the basin of attraction of 0.



A numerical plot for λ = 0.9. Blue points→ 0 fast, red points→ 0 slow.



A numerical plot for λ = 1. Blue points→ 0 fast, red points→ 0 slow.



Around a pole for λ = 0.7. Thanks to Dan Goodman for code.


