Iteration of quasiregular tangent functions in three dimensions

Dan Nicks

University of Nottingham
April 2012

Joint work with Alastair Fletcher

Quasiregular mappings

Quasiregular functions on \mathbb{R}^{n} generalize analytic functions on \mathbb{C}.

Definition

- A continuous function $f: U \rightarrow \mathbb{R}^{n}$ on a domain $U \subseteq \mathbb{R}^{n}$ is called quasiregular if $f \in W_{n, \text { loc }}^{1}(U)$ and there exists $K \geq 1$ such that

$$
\|D f(\mathbf{x})\|^{n} \leq K J_{f}(\mathbf{x}) \quad \text { a.e. in } U .
$$

Quasiregular mappings

Quasiregular functions on \mathbb{R}^{n} generalize analytic functions on \mathbb{C}.

Definition

- A continuous function $f: U \rightarrow \mathbb{R}^{n}$ on a domain $U \subseteq \mathbb{R}^{n}$ is called quasiregular if $f \in W_{n, \text { loc }}^{1}(U)$ and there exists $K \geq 1$ such that

$$
\|D f(\mathbf{x})\|^{n} \leq K J_{f}(\mathbf{x}) \quad \text { a.e. in } U .
$$

- More generally, a continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \cup\{\infty\}$ is called quasiregular (or quasimeromorphic) if the set of poles $f^{-1}(\infty)$ is discrete and if f is quasiregular on $\mathbb{R}^{n} \backslash f^{-1}(\infty)$.

The Zorich mapping

The Zorich map $Z: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \backslash\{\mathbf{0}\}$ is a quasiregular analogue of the exponential function. It can be defined as follows:

- Choose a bi-Lipschitz map

$$
h:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^{2} \rightarrow\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\} .
$$

The Zorich mapping

The Zorich map $Z: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \backslash\{\mathbf{0}\}$ is a quasiregular analogue of the exponential function. It can be defined as follows:

- Choose a bi-Lipschitz map

$$
h:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^{2} \rightarrow\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\} .
$$

(2) Define $Z:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^{2} \times \mathbb{R} \rightarrow\{(x, y, z): z \geq 0\}$ by

$$
Z(x, y, z)=e^{z} h(x, y) .
$$

The Zorich mapping

The Zorich map $Z: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \backslash\{\mathbf{0}\}$ is a quasiregular analogue of the exponential function. It can be defined as follows:

- Choose a bi-Lipschitz map

$$
h:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^{2} \rightarrow\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\} .
$$

(2) Define $Z:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^{2} \times \mathbb{R} \rightarrow\{(x, y, z): z \geq 0\}$ by

$$
Z(x, y, z)=e^{z} h(x, y) .
$$

- Extend Z to all of \mathbb{R}^{3} by repeatedly reflecting in planes.

The Zorich map is quasiregular on \mathbb{R}^{3} and doubly-periodic with periods $(2 \pi, 0,0)$ and $(0,2 \pi, 0)$.

Trigonometric analogues

- Quasiregular maps of \mathbb{R}^{n} which generalize the sine and cosine functions have been constructed by Drasin, by Mayer and by Bergweiler and Eremenko.
- By iterating their 'trigonometric' map, Bergweiler and Eremenko obtained a seemingly paradoxical decomposition of \mathbb{R}^{n}.
- We will construct and iterate a 3-dimensional quasiregular analogue of the meromorphic tangent function.

Construction of a generalized tangent mapping

Observe that the complex function

$$
\tan \zeta=\frac{i\left(1-e^{2 i \zeta}\right)}{1+e^{2 i \zeta}}
$$

is the composition of a Möbius map and the exponential function.

Construction of a generalized tangent mapping

Observe that the complex function

$$
\tan \zeta=\frac{i\left(1-e^{2 i \zeta}\right)}{1+e^{2 i \zeta}}
$$

is the composition of a Möbius map and the exponential function.
Define a sense-preserving Möbius map $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \cup\{\infty\}$ by

$$
A(x, y, z)=(0,0,1)+\frac{(2 x, 2 y,-2(z+1))}{x^{2}+y^{2}+(z+1)^{2}} .
$$

We then define our 3-dimensional analogue of tangent by

$$
T(\mathbf{x})=(A \circ Z)(2 \mathbf{x}) .
$$

Expressions for T

T contains embedded copies of the usual (complex) tangent function:

- $T(0, y, z)=(0, \operatorname{Re}(\tan (y+i z)), \operatorname{Im}(\tan (y+i z)))$,
- $T(x, 0, z)=(\operatorname{Re}(\tan (x+i z)), 0, \operatorname{Im}(\tan (x+i z)))$.

Expressions for T

T contains embedded copies of the usual (complex) tangent function:

- $T(0, y, z)=(0, \operatorname{Re}(\tan (y+i z)), \operatorname{Im}(\tan (y+i z)))$,
- $T(x, 0, z)=(\operatorname{Re}(\tan (x+i z)), 0, \operatorname{Im}(\tan (x+i z)))$.

If $M(x, y)=\max \{|x|,|y|\} \leq \pi / 4$ and we write $\zeta=M(x, y)+i z$, then

$$
T(x, y, z)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}} \operatorname{Re}(\tan \zeta), \frac{y}{\sqrt{x^{2}+y^{2}}} \operatorname{Re}(\tan \zeta), \operatorname{Im}(\tan \zeta)\right) .
$$

Geometric properties of T

Comparing T with tan, the z-axis plays the role of the imaginary axis, while the $x y$-plane plays the role of the real axis.

- T is doubly-periodic with periods $(\pi, 0,0)$ and $(0, \pi, 0)$.

Geometric properties of T

Comparing T with tan, the z-axis plays the role of the imaginary axis, while the $x y$-plane plays the role of the real axis.

- T is doubly-periodic with periods ($\pi, 0,0$) and ($0, \pi, 0$).
- T omits the values $(0,0, \pm 1)$. These are asymptotic values of T :

$$
\lim _{z \rightarrow \pm \infty} T(x, y, z)=(0,0, \pm 1) .
$$

Geometric properties of T

Comparing T with tan, the z-axis plays the role of the imaginary axis, while the $x y$-plane plays the role of the real axis.

- T is doubly-periodic with periods $(\pi, 0,0)$ and $(0, \pi, 0)$.
- T omits the values $(0,0, \pm 1)$. These are asymptotic values of T :

$$
\lim _{z \rightarrow \pm \infty} T(x, y, z)=(0,0, \pm 1) .
$$

- $T:\{x y$-plane $\} \rightarrow\{x y$-plane $\} \cup\{\infty\}$.
- The $\{z>0\}$ and $\{z<0\}$ half-spaces are completely invariant under T.

Geometric properties of T

Comparing T with tan, the z-axis plays the role of the imaginary axis, while the $x y$-plane plays the role of the real axis.

- T is doubly-periodic with periods $(\pi, 0,0)$ and $(0, \pi, 0)$.
- T omits the values $(0,0, \pm 1)$. These are asymptotic values of T :

$$
\lim _{z \rightarrow \pm \infty} T(x, y, z)=(0,0, \pm 1) .
$$

- $T:\{x y$-plane $\} \rightarrow\{x y$-plane $\} \cup\{\infty\}$.
- The $\{z>0\}$ and $\{z<0\}$ half-spaces are completely invariant under T.
T is highly symmetric: If R is a reflection in a co-ordinate plane then

$$
T(R(\mathbf{x}))=R(T(\mathbf{x})) .
$$

Iteration of tangent maps on \mathbb{C}

For a parameter $\lambda>0$, Devaney and Keen described the dynamics of the meromorphic tangent family $\tau_{\lambda}(\zeta)=\lambda \tan \zeta$.

Iteration of tangent maps on \mathbb{C}

For a parameter $\lambda>0$, Devaney and Keen described the dynamics of the meromorphic tangent family $\tau_{\lambda}(\zeta)=\lambda \tan \zeta$.

Theorem (Devaney and Keen)

- If $0<\lambda<1$, then $J\left(\tau_{\lambda}\right) \subseteq \mathbb{R}$ is locally a Cantor set. Attracting fixed point at origin.
- If $\lambda=1$, then $J\left(\tau_{\lambda}\right)=\mathbb{R}$. Parabolic fixed point at origin.
- If $\lambda>1$, then $J\left(\tau_{\lambda}\right)=\mathbb{R}$. Attracting fixed points at $\pm i \xi_{0}$, where $\xi_{0}>0$ solves $\xi_{0}=\lambda \tanh \xi_{0}$.

Dynamics of λT

For $\lambda>0$ we put

$$
T_{\lambda}(\mathbf{x})=\lambda T(\mathbf{x})
$$

We iterate T_{λ} and aim to establish an analogue of the $\lambda \tan \zeta$ results.
First, we describe the behaviour on the upper and lower half-spaces.

Dynamics of λT

For $\lambda>0$ we put

$$
T_{\lambda}(\mathbf{x})=\lambda T(\mathbf{x})
$$

We iterate T_{λ} and aim to establish an analogue of the $\lambda \tan \zeta$ results.
First, we describe the behaviour on the upper and lower half-spaces.

Theorem

- If $0<\lambda<1$, then T_{λ} has an attracting fixed point at the origin.

Dynamics of λT

For $\lambda>0$ we put

$$
T_{\lambda}(\mathbf{x})=\lambda T(\mathbf{x})
$$

We iterate T_{λ} and aim to establish an analogue of the $\lambda \tan \zeta$ results.
First, we describe the behaviour on the upper and lower half-spaces.

Theorem

- If $0<\lambda<1$, then T_{λ} has an attracting fixed point at the origin.
- If $0<\lambda \leq 1$, then $T_{\lambda}^{k}(\mathbf{x}) \rightarrow \mathbf{0}$ on $\{(x, y, z): z \neq 0\}$, as $k \rightarrow \infty$.

Dynamics of λT

For $\lambda>0$ we put

$$
T_{\lambda}(\mathbf{x})=\lambda T(\mathbf{x}) .
$$

We iterate T_{λ} and aim to establish an analogue of the $\lambda \tan \zeta$ results.
First, we describe the behaviour on the upper and lower half-spaces.

Theorem

- If $0<\lambda<1$, then T_{λ} has an attracting fixed point at the origin.
- If $0<\lambda \leq 1$, then $T_{\lambda}^{k}(\mathbf{x}) \rightarrow \mathbf{0}$ on $\{(x, y, z): z \neq 0\}$, as $k \rightarrow \infty$.
- If $\lambda>1$, then T_{λ} has attracting fixed points at $\left(0,0, \pm \xi_{0}\right)$, where $\xi_{0}=\lambda \tanh \xi_{0}$, and

$$
T_{\lambda}^{k}(\mathbf{x}) \rightarrow\left(0,0, \pm \xi_{0}\right) \quad \text { on } \quad\{(x, y, z): \pm z>0\} .
$$

What's a Julia set?

For a meromorphic function f with poles, the Julia set $J(f)$ satisfies

$$
J(f)=\overline{O_{f}^{-}(\infty)}=\partial l(f)
$$

where $I(f)=\left\{\zeta: f^{k}(\zeta) \rightarrow \infty\right.$ as $\left.k \rightarrow \infty\right\}$.

What's a Julia set?

For a meromorphic function f with poles, the Julia set $J(f)$ satisfies

$$
J(f)=\overline{O_{f}^{-}(\infty)}=\partial l(f),
$$

where $I(f)=\left\{\zeta: f^{k}(\zeta) \rightarrow \infty\right.$ as $\left.k \rightarrow \infty\right\}$.

Theorem

For all $\lambda>0$,

$$
\overline{O_{T_{\lambda}}^{-}(\infty)}=\partial I\left(T_{\lambda}\right)=\overline{I\left(T_{\lambda}\right)} .
$$

What's a Julia set?

For a meromorphic function f with poles, the Julia set $J(f)$ satisfies

$$
J(f)=\overline{O_{f}^{-}(\infty)}=\partial I(f),
$$

where $I(f)=\left\{\zeta: f^{k}(\zeta) \rightarrow \infty\right.$ as $\left.k \rightarrow \infty\right\}$.

Theorem

For all $\lambda>0$,

$$
\overline{O_{T_{\lambda}}^{-}(\infty)}=\partial I\left(T_{\lambda}\right)=\overline{I\left(T_{\lambda}\right)} .
$$

Call this set J. Then J is an uncountable perfect set.

What's a Julia set?

For a meromorphic function f with poles, the Julia set $J(f)$ satisfies

$$
J(f)=\overline{O_{f}^{-}(\infty)}=\partial l(f),
$$

where $I(f)=\left\{\zeta: f^{k}(\zeta) \rightarrow \infty\right.$ as $\left.k \rightarrow \infty\right\}$.

Theorem

For all $\lambda>0$,

$$
\overline{O_{T_{\lambda}}^{-}(\infty)}=\partial I\left(T_{\lambda}\right)=\overline{I\left(T_{\lambda}\right)} .
$$

Call this set J. Then J is an uncountable perfect set. If U is an open set that meets J then, for some $m>0$,

$$
T_{\lambda}^{m}(U)=\left(\mathbb{R}^{3} \cup \infty\right) \backslash\{(0,0, \pm \lambda)\} .
$$

What's a Julia set?

For a meromorphic function f with poles, the Julia set $J(f)$ satisfies

$$
J(f)=\overline{O_{f}^{-}(\infty)}=\partial l(f),
$$

where $I(f)=\left\{\zeta: f^{k}(\zeta) \rightarrow \infty\right.$ as $\left.k \rightarrow \infty\right\}$.

Theorem

For all $\lambda>0$,

$$
\overline{O_{T_{\lambda}}^{-}(\infty)}=\partial I\left(T_{\lambda}\right)=\overline{I\left(T_{\lambda}\right)} .
$$

Call this set J. Then J is an uncountable perfect set. If U is an open set that meets J then, for some $m>0$,

$$
T_{\lambda}^{m}(U)=\left(\mathbb{R}^{3} \cup \infty\right) \backslash\{(0,0, \pm \lambda)\} .
$$

J is contained in the closure of the set of periodic points of T_{λ}.

What does J look like?

$$
J=\overline{O_{T_{\lambda}}^{-}(\infty)}=\partial l\left(T_{\lambda}\right) \subseteq\{x y \text {-plane }\}
$$

What does $ل$ look like?

$$
J=\overline{O_{T_{\lambda}}^{-}(\infty)}=\partial l\left(T_{\lambda}\right) \subseteq\{x y \text {-plane }\}
$$

Theorem
If $\lambda \geq 1$ then J is connected. If $0<\lambda<1$ then J is not connected.

What does J look like?

$$
J=\overline{O_{T_{\lambda}}^{-}(\infty)}=\partial l\left(T_{\lambda}\right) \subseteq\{x y \text {-plane }\}
$$

```
Theorem
If \lambda}\geq1\mathrm{ then J is connected. If 0< < <1 then J is not connected.
```


Theorem

If $\lambda>\sqrt{2}$ then $J=\{x y$-plane $\}$.
The constant $\sqrt{2}$ here cannot be replaced by any smaller value.
When $\lambda<\sqrt{2}$, a (relatively) open subset of the $x y$-plane lies in the attracting basin of $\mathbf{0} \ldots$

Attracting basin of 0

Each square is the subset $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]^{2}$ of the $x y$-plane. The shaded points lie in the basin of attraction of 0 .

A numerical plot for $\lambda=0.9$. Blue points $\rightarrow \mathbf{0}$ fast, red points $\rightarrow \mathbf{0}$ slow.

A numerical plot for $\lambda=1$. Blue points $\rightarrow \mathbf{0}$ fast, red points $\rightarrow \mathbf{0}$ slow.

Around a pole for $\lambda=0.7$. Thanks to Dan Goodman for code.

